
i

On Evaluating Parallel Computer Systems

George B. Adams 111
Robert L . Brown
Peter J . Denning

September 1985

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS TR 85.3

Research Institute for Advanced Computer Science

-

(N A S A - C R - I b 4 3 9 9) ON EVALUATKNG PARALLEL id B 9- 2 9 Y 7 7

Advanced Computer Science) 15 p C S C L 09R
CQMPUTLR SYSTEM$ (Research i n s t . f o r

Uncl as
G3/62 0217906

On Evaluating Parallel Computer Systems

George B. Adams I11
Robert L. Brown
Peter J. Denning

Research Institute for Advanced Computer Science

RIACS TR 85.3
September 1985

Prepared by RIACS under NASA Contract No. NAS 2-11530 and DARPA Contract No. BDM-
S500-0X6000. The content of this document does not represent the official position of NASA or
DARPA.

1. Introduction

(approximate) speed limit for any single-processor architecture. By 1990
scientific and engineering applications will require speeds well beyond this limit.
Computer architectures capable of massive parallelism are necessary to achieve
such speeds. Because these machines are based on models of computation
different from the familiar sequential process model, intuition is not a reliable
basis for predicting how easy the new machines will be to program or how fast
they are capable of running new algorithms. Instead, a systematic experimental
approach is needed.

Because the architectures most capable of massive parallelism are also most
different from anything familiar, there are no real applications programs to use
as benchmarks, there are no users familiar with the applicable programming
languages, and there are few working prototypes on which to run experiments.
Because of the long lead time and great expense to develop a radically new archi-
tecture, we can ill afford to defer all serious attempts at evaluation until the
machine has been delivered.

This report explores principles to guide the evaluation of computer systems
employing new architectures. In summary, they are:

1. Evaluation must be an integral, ongoing part of a project to develop a
computer of radically new architecture.

2. The evaluation process should seek to measure the usability of the sys-
tem as well as its performance.

3. Users from the application domains must be an integral part of the
evaluation process.
Evaluation results should be fed back into the design process.

Modern supercomputers are within a factor of 10 of the 1 GFLOPS

4.

The inspiration for these principles comes from three main sources. The
first is a trend noticeable in major NASA projects. More and more NASA mis-
sions incorporate the concept that the resulting systems will be national
resources for industry and science. Notable examples include the NAS (Numeri-
cal Aerodynamic Simulator), a complex of supercomputers for research in com-
putational fluid dynamics; the Space Shuttle, for scientific experiments and satel-
lite deployments; and the Space Station, for scientific research and space-borne
manufacturing. These systems are very expensive and take many years to
mature. Because of their complexity, it is impossible to forecast the details of
how they will be used. NASA therefore seeks ways to involve users in the
development of these systems 80 that the modes of human-machine interaction
can be studied as they evolve and can influence the design. The same principles
carry over to the design of complex new computers.

reported in 1969 by David Sayre of the IBM Research Center at Yorktown
[Sayr69]. Many prior attempts at evaluating the efficiency of virtual memory -

The second inspiration comes from an evaluation study of virtual memory

a new architecture in the 1960s - simply ran programs designed for manual
overlays on a machine that handled overlays automatically. Those studies often
led to the conclusion that the old programs would run slower on the new
machine; but the conclusions were often disputed because they did not take
account of the fact that users adapt to the new environment. So the real ques-
tion - how efficient is virtual memory at handling programs designed by users
who are aware of the virtual memory environment? - was unanswered until
Sayre and his colleagues studied it. They demonstrated that programmers aware
of program locality, the basic concept of virtual memory, created new versions of
old programs that ran more efficiently on the new machine than the old pro-
grams ran on the old machine. They also demonstrated that the new architec-
ture had a significant effect on lowering the cost of the programming process
itself. Sayre’s study stands almost alone in the annals of computing as a project
that seriously attempted to assess the usability of the new architecture as well as
its performance. Such studies have probably been rare because they are time
consuming and difficult to plan. Yet they are essential.

The third inspiration for this study was recent. In 1983, Jack Dennis of
MIT suggested that a workshop in which real users attempted to write programs
for the data flow machine he was designing would be extremely valuable for two
reasons. First, he felt it would allay fears that the machine was so radical that
it would be difficult to program and use. Second, it would provide the designers
with information about the limitations of the design while there was still time to
alter it. We at RIACS agreed to host a workshop to evaluate Dennis’s machine,
called the MIT Static Data Flow Machine, in September 1984. Funding for the
workshop was provided jointly by NASA Ames Research Center and DARPA.
This workshop specifically addressed the suitability of the MIT machine for com-
putational applications of interat ito NASA Ames and DARPA [Adam85]. Our
experience at organizing this workshop and evaluating the results has sharpened
our appreciation for the methods of understanding how a new architecture
interacts with its users.

-*

2. Approach to Evaluation

The process of solving a problem b y computer divides roughly into two parts:
computation and programming. The evaluation criteria can similarly be divided
into two broad categories. Metrics for computation are generally objectively
measurable; they include the instantaneous speed of the hardware, the average
speed of programs, queueing at various points, response times, and throughputs.
Metrics for programming arc generally more subjective; they include assessments
of productivity and opinions about the usability of various features of the
hardware, the languages, and the operating system. Metrics for computation are
generally easier to obtain than metrics for programming. We advocate greater

The first step in any evaluation is careful determination of a set of metrics.

- 3-

emphasis on programming metrics.

2.1. Problem Solving Model
As software tools advance in sophistication, users will think of computers

more as support systems for problem-solving than as mechanisms to write and
run programs. Our approach focuses on the ability of a machine to support
problem-solving in given disciplines. Therefore, we need to formulate our evalua-
tion criteria with respect to a model of the process by which scientific problems
are solved computationally.

Figure 1. The model treats a solution as a sequence of increasingly detailed
algorithms. Each stage of the model is a transformation to a more detailed
form, incorporating more knowledge about the approach and the architecture of
the system on which the solution will be performed. The input to the highest
stage is a description of the problem in natural and mathematical language. The
output from the lowest stage is machine codes.

One of the purposes of such a model is to help determine the best stage at
which to deviate from the previous solution process to construct a new process
leading to machine codes for the new architecture. The model depicted in the
figure is certainly not the most general, but it is a good starting point for a dis-
cussion.

The process of developing a computer solution to a problem begins with a
requirement, usually called the problem statement, given typically as informal
prose. We refer to this primitive representation of the solution as “stage zero.”

Using knowledge, terminology, and concepts from the discipline, together
with the language of mathematics, the scientist derives a precise statement of
the solution. This statement may be a simple function or a complicated set of
equations. We refer to the transformation from the informal solution to the pre-
cise formulation as “stage one.”

In the next step, the solution mathematics are transformed into an abstract
algorithm. This is a machine independent algorithm expressed in discrete
mathematics, in logic, and in functional forma. At this stage selections are made
for discrete approximations to continuous functions, numerical methodologies,
general algorithmic approaches, general organization of the data, error control,
recursion, and partitions into potentially parallel components. Numerical
approximations, if necessary, are selected. These selections are influenced by the
model of computation implemented by the target machine, but not yet by
specific details of the machine’s hardware. We refer to the transformation from
the mathematical model to the abstract algorithm as “stage two.’’

computer languages. It is possible that different components of the abstract

Our model of the process of problem solving with a computer is depicted in

Next, the abstract algorithm is transformed into a set of programs in real

- 3-

Mat hemat ical

2
Abstract

Algorithm

discrete mathematics -

4
Machine
Program

machine language

Work done within
the discipline, may
predate computing

Involves discretization,
approximation,

partitioning, divide
and conquer

Involves mapping
to specific

architecture

Compilation and
optimization, with
or without human

intervention

~ ~~ ~

Figure 1. Steps in Scientific Problem Solving

- 4 -

algorithm require different languages for their best implementation; thus the
applicable languages should be mutually compatible. For each component of the
abstract algorithm, specific choices are made about factors that must be
expressed in a programming language - e.g., data representations, data flow,
control flow, and precision. Specific characteristics of the machine will influence
these choices - e.g., word size, memory size, existence of vector instructions, and
number of processors. We refer to the transformation from an abstract algo-
rithm to a collection of concrete algorithms as “stage three.”

tions into machine code and linkages that can be interpreted by the underlying
hardware and networks. The technology for these steps is well understood for
conventional machines and is incorporated into compilers, linkers, networks, and
operating systems. We refer to this transformation as “stage four.”

machine to a new computational model on a new machine. This is to lay out the
stages of the problem-solving process that led to the current solution (stage four)
and then backtrack only as far as needed to change the decisions that were
influenced by the current architecture and computational model. Some exam-
ples:

The final step is translation of the concrete programs and their interconnec-

There is an attractive strategy to adapt a given application on the current

1. The original program is in FORTRAN and is to be moved to a new
machine. The original program can be recompiled using the new
machine’s FORTRAN compiler. This corresponds to backing up to
stage three without changing any prior stage.
The original program is in FORTRAN and is to be moved to an APL
machine. The scientist extracts the abstract algorithm from the FOR-
TRAN program and reimplements it as an APL program, then uses the
APL interpreter to solve the problem. This corresponds to backing up
to stage two.
The original program is in FORTRAN and is to be moved from a
VAXTM to a Cray-1. In this case, the scientist may need to change the
strategy of the abstract algorithm to arrange the data and iteration
patterns to take advantage of the vector pipelines on the Cray-1. This
corresponds to backing up to stage one.

2.

2.

2.2. Evaluation Criteria
We noted above that the traditional criteria for evaluating performance are

computation-oriented - they evaluate measures of instantaneous speed of the
hardware, average speed of programs, device utilizations, throughputs at selected
points in the system, and response times. We also noted that another set of cri-
teria has become important, namely those that are programming oriented - they

.

VAX u a trademark of Digital Equipment Corporation.

- 5 -

evaluate the utility of a language, time to construct a working program, ease of
debugging, modularity and maintainability of code, productivity of program-
mers, cost of a solution, and opinioins about system usability.

Actually, these two sets of criteria are closely related. In the model of
scientific problem solving, the Programming criteria seek to evaluate the four
stages. The computational criteria focus on the results of the fourth stage only.
That computational criteria are more common than programming criteria is sim-
ply an indication that in the past most changes in architecture did not change
the sequential process model on which most programs are based and, hence, did
not require changes to the process arbove stage three.

The amount of effort one is willing to invest will constrain the extent to
which the stages of the problem solving process can be evaluated. Generally, the
less one spends, the more the process will focus on the higher numbered stages
only. There are roughly four levels of effort.

-

1. Raw performance evaluation. The burst performance of a
machine, expressed in operations per second, may be computed from
knowledge of the clock rates and from the speeds of important com-
ponents such as memory, register, and bus. This provides an absolute
upper bound on the speed at which operations can be executed. The
advantage of this level of evaluation is that it permits machines to be
compared without actually running programs. The disadvantage is
that few real programs run at average speeds approaching the
machine’s instantaneous speed. The Cray X-MP, for example, is rated
at 650 MFLOPS; most FORTRAN codes realize only about 100
MFLOPS average and a few hand-optimized codes may attain 150
MFLOPS. The reason is that the sequential parts of the computation
dominate and cannot be made faster by vector pipelines.
Small function programming. At this level, a few common library
functions, such bs matrix multiply or FFT, are carefully coded in
machine language, then tested and tuned by hand. The objective is
maximum speed on the target machine. The finely tuned functions of
one machine are compared with their finely tuned counterparts on
another machine. The advantage of this level of evaluation is that
only a few, frequently used programs need be rewritten and recom-
piled; it is a good way of quickly “stress-testing” a new machine. This
can lead to a higher degree of confidence in comparisons than an
evaluation at the previous level. The disadvantage is that the selected
programs are only a smal.1 portion of real programs, hence, inferences
about real programs remibin weak.

package, such aa LINPACK or Livermore LOOPS, ie reprogrammed
for the new machine. It is run and timed for a standard input.
Machines are evaluated bly comparing the results. This approach is an

2.

3. Benchmark programming. At this level, a substantial software

- 6 -

expansion of the concept underlying the previous level. The advantage
is that inferences about machines are more likely to be observed in
practice because the benchmarks can be constructed to accurately
reflect the statistics of the actual workload on the system. The disad-
vantage is that the approach gives no information about the effort of
programming experienced by users of the machines being compared.

4. Complete application programming. The machine is evaluated by
programming, running, and observing entire end-user applications.
The programming is usually best performed by experts in the domain
of the application. An entire programming environment consisting of
editors, compilers, linkers, and debuggers is required to perform these
tests. The advantage is that programming effort and the utility of
software tools can be directly evaluated in any given discipline. The
disadvantage is that these evaluations presuppose a good repertoire of
utility software and require a good deal of time to prepare and carry
out.

The work at each of the four levels is often done by a different group of peo-
ple. For example, raw performance and small function programming is most
often done by the architects of the new system. This group best understands the
lowest levels of the machine and how to achieve the greatest speed from the
design. Benchmark programming is often performed by a group representing end
users; the users themselves are not actually involved. Application-level evalua-
tion is performed with direct cooperation of the users. Typically there is little
communication between the architects (who test at the first two levels) and the
users or their representatives (who test at the last two levels). This means that
limitations discovered by the users must often be tolerated by the users rather
than repaired by the architects.

advocate building evaluations at the fourth level into the process of building a
machine. This maximizes the opportunity for discovered limitations to influence
the design in a positive way. We believe this is especially important with the
new generation of concurrent architectures, where the amount of experience is
small, the project lead time is large, and our intuitions are undeveloped.

-

To overcome the communications gap between users and architects, we

3. Methodology of an Actual Evaluation
In the fall of 1983, Jack Dennis suggested that RIACS host a workshop in

which potential users of parallel computation could work with him in an attempt
to program real problems on the MIT Static Data Flow Machine. Most of the
architecture of the machine had been specified but some parts were incomplete; a
programming language, VAL, a compiler, and an interpreter had been built. The
only VAL programs that existed at that time were written by the machine’s

- 7 -

architects and students, but not by users in actual disciplines.
The purposes of the workshop would be several: a) determine whether users

would find that massively parallel computations were easy to program in the
data flow language VAL; b) obtain preliminary evaluations of the speed at which
key algorithms might run on the data flow machine; c) get feedback to influence
remaining design decisions; and d) give NASA and DARPA a preliminary
evaluation of the ability of data flow architectures to provide needed computa-
tional power in key disciplines. By spring of 1984, we at RIACS had agreed on a
plan for a two-week workshop to be held in September 1984, and had obtained
funding for this effort from both NASA and DARPA. The workshop was held as
planned. It consisted of seven teams, staffed by NASA and RIACS scientists,
each expert in a particular discipline. Jack Dennis and two colleagues from MIT
participated; they lectured on the principles of data flow programming and gave
detailed advice to the individual team members. RIACS supplied offices, a com-
puter system, and administrative support; they analyzed the data and issued a
final report in March 1985. All parties judged that the workshop succeeded in
its purposes [Adam85].

3.1. Planning Maxims
In planning for the workshop, we applied the general principles stated ear-

lier. For the context of a two-week study, we refined the principles into a series
of maxims that guided the details of administering the workshop and evaluating
the results. The maxims are stated and elaborated below.

1. Plan ahead. It goes almost without saying that a two-week workshop
with many participants, a workshop that sought to learn much in a short period,
needed careful planning. Funding, scheduling, location, and staffing were all
prepared well in advance.

development of a new computer, the designers must participate. Jack Dennis
and two colleagues from the design group of the MIT Static Data Flow Machine
came to RIACS for the workshop. Their role was to provide instruction on the
MIT machine and VAL and expertise for consultation on data flow computation.

3. Bring in scientist volunteers and organize them into teams. We
obtained 11 volunteers. They were organized into seven teams representing
seven application areas of interest to the study sponsors, the MIT contingent,
and RIACS. Because it was important that the participants be unbiased with
regard to data flow computation, we asked for volunteers who had an open mind
to new computational schemata and who also had no prior experience with data
flow programming. Because it was important that the participants give expert
assessments of the usability of the MIT design, we asked for volunteers who were
active in creating, refining, and evolving production code used in their discip
lines. We asked each team to bring a working supercomputer code to the study

2. Bring in the architeeto. If evaluation is to be an integral part of the

for comparison with the data flow codes they would create.
4. Schedule a formal workshop. To assess the usability of the new

architecture, we needed to observe the scientists directly as they worked and
interacted over a protracted period, in a setting conducive for research. Two
weeks was about the maximum amount of release time we could arrange for the
volunteers. The two-week duration limited the size of the problem that could be
studied by each team. It was nonetheless sufficient to allow the seven teams
chosen to consider a kernel problem in their disciplines. The workshop format
has the additional benefit of isolating the participants from their daily work -
free from distractions of telephones, inquisitive coworkers, and managers. (We
did schedule the daily starting time late enough to allow participants to take
care of urgent daily tasks before coming to the workshop.)

5. Provide a familiar programming environment. Most of the
workshop participants were not familiar with the UNIXTM operating system used
at RIACS or with its editors. The MIT staff were familiar with MULTICS and
the Ames scientists with VAX/VMSTM. To accommodate these diverse back-
grounds, we borrowed several DEC VTlOO terminals for the scientists and pro-
vided an emulator of EDT (the VMS editor) within the UNIX emacs editor.
This was extremely successful. We needed to provide only a single sheet of sys-
tem documentation telling how to log on and off the system, how to invoke the
editor, and how to use the VAL translator and run-time system.

the first few days would be mostly lectures by the MIT staff on data flow con-
cepts, machine architecture, and the VAL language. Lectures were alternated
with terminal sessions in which the participants experimented with VAL pro-
grams. The remaining days were scheduled mostly for lab work with additional
lectures given on special topics as required. The MIT staff were available
throughout the lab sessions to serve aa consultants on data flow programming.
All documentation on the MIT Static Data Flow Machine was made available in
personal copies for each participant. This schedule worked well. By the third
day, the participants were ready to begin programming their selected problems
in VAL.

I
I

6. Plan an agenda of lecture and lab. We planned a schedule in which

7. Automate data collection where possible. We carefully considered
what metrics would be suitable for this workshop and how to collect the data.
Because the MIT architecture was not completely specified, it was not possible to
measure VAL programs in execution; accordingly, we made no attempt to instru-
ment the intermediatelanguage interpreter. Because we did not know in
advance what metrics would contain the most information, we recorded every-
thing: the input and output of each compiler and interpreter run by each partici-
pant. From this we were able to extract measures such as number of compila-
tions, number of errors, compile times, interpreter times, and the like. We

UNIX ir a trademark of A T l T Information Sptcmr.

- 9-

decided to err on the side of collecting too much data because, when the
workshop was over, nothing more could be gathered.

naires, diaries, and reports. We constructed a questionnaire for the participants
to complete at the end of the worke'hop; we solicited their opinions and com-
ments on every aspect of the study. We asked each participant to keep a file
containing a daily dairy of impressions. The RIACS and MIT staffs kept diaries
of their impressions and comments received during direct interactions with the
participants. We asked each team to submit a written report on their project
within two weeks after the workshop ended.
- .^_-_ The responses to the questionnaire constituted the most illuminating feed-
back from participants to the syste:m designers. These comments revealed that
at least three aspects of the architecture needed further thought (the ability of
the hardware to scale over a wide range of processing elements, the method of
matrix data storage, and the 1/0 system bandwidth).

To obtain subjective information from the participants, we used question-

8. Keep data on-line. W e asked participants to keep notes containing
impressions of the day's activities on-line. We did not insist strongly on this
and, unfortunately, there waa too much variation among participants. If we
were to do this again, we would schiedule a short block of time at the end of each
day during which participants wou1.d be required to make entries in their notes.
The questionnaires were filled out by hand but put on-line by a secretary. The
final reports were written on-line using the emulated editor. It significantly
simplified data analysis and report generation to have all this material available
in this way.

3.3. Observations on the Workshop

a) End users assessed the ease of programming in the data flow language VAL.
b) The final reports did contain preliminary evaluations of the speed at which
key algorithm might run on a data flow machine. c) Several important limita-
tions of the design were uncovered by the users and the architects set out to
correct them. d) NASA and DARE'A received a preliminary evaluation of the
ability of data flow architectures to provide needed computational power in key
disciplines. We conclude that the general organizational principles discussed
above are achievable in practice.

volunteer participants. The initial two weeks of activity led to useful prelim-
inary results. We concluded that a longer study - three weeks, for example -
would not have significantly i n c m d the utility of the preliminary results.
Most participants continued to work on their projects long after the workshop

The most important observation was that workshop met its four goals.

We were surprised and pleased by the sustained effort made by the

VMS u a trademark of Digital Equipment Corporation.

- 10-

ended, turning their final reports into papers submitted for publication. Some
participants suggested that the two weeks be separated by a one or two week
interval during which they could think more deeply about data flow program-
ming and feel more prepared for the second week. Based, however, on the
amount that was accomplished and the fact that participants completed their
work in spare time after the formal end of the workshop, we are not convinced
that this change would have materially affected the results. We conclude that a
two-contiguous-week study was adequate for the stated purposes.

The office space set aside for the study made it easy for the MIT participants to
sit down with individual scientists for extended interaction without interruption
and without risk of breaking the concentration of other participants. We con-
clude that the physical environment in which the workshop is conducted is an
important factor in the successful outcome.

Our study involved a model of computation different from that in which any
of the applications codes had been developed. Thus we watched carefully to see
how far back in the problem solving-process scientists had to retreat before being
able to construct a data flow solution. We observed that most participants did
not back up past “stage two,” the abstract algorithm stage. They kept the same
mathematical model and abstract algorithm as were used to construct the exist-
ing FORTRAN code. When questioned about this, most argued that the abstract
algorithm exhibited a high degree of parallelism, sufficient to absorb the avail-
able processing capacity of the MIT machine specified for the study and, hence,
further retreat was not warranted in the short time available. We concluded
that for the purposes of our study, these disciplines were justified in considering
no further retreat in the problem-solving process. This conclusion may not carry
over to other disciplines, or even more difficult problems in the same disciplines.
This aspect of a study is worth monitoring closely.

ful when conducting larger studies to employ an expert consultant to assist in
designing the questionnaires and other methods of subjective data collection.
This would help reduce bias and improve the ability to compare the results of
this study with later studies of the same machine or different machines.

Our study was time consuming and laborious. Its budget of $20,000
significantly understates the actual effort expended for several reasons:

1.

The participants appreciated the effort to provide terminals and editors.

The types of information collected were useful and revealing. It may be use-

None of the participants’ time was charged to the effort. The MIT staff
time was covered by their own research grants. NASA staff time was
donated to the project by their managers granting release time. The 17
people directly involved in the study collectively provided 28 person-
weeks of effort during the workshop proper, and may have donated a
like amount of time for follow-up work. Thus the sponsors provided the
equivalent of more than one person-year of effort that did not appear in
the budget.

- 11-

2. The authors significantly underestimated the effort to analyze the data,
consult with the team participants about their reports, and prepare the
final report. Another four man-months of effort was expended to this
end.

- 12-

References

[Adam851
Adams, G . B., R. L. Brown, and P. J. Denning, “Report on an Evaluation
Study of Data Flow Computation,” RIACS TR 85.2, Research Institute for
Advanced Computer Science (Apr 1985).

Sayre, D., “IS Automatic “Folding” of Programs Efficient Enough to Dis-
place Manual?,” CA CM 12(12), pp. 656-660 (Dec 1969).

[Sayr69)

.

